Code: CSCS1T1

I M.Tech-I Semester- Special Supplementary Examinations March 2019

DATA STRUCTURES AND ALGORITHMS (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours	Max.Marks:70	
Answer any FIVE questions.	All questions carry equal marks	

- 1.a) Explain time and space complexity related to algorithms and also state their importance. 8 M
 - b) What is a doubly linked list? List the advantages and disadvantages of using such lists.

 6 M
- 2.a) Write an algorithm to merge two sorted list L1 and L2. List L1 is sorted in increasing order and list L2 in sorted in decreasing order.7 M
 - b) Explain Binary Search Technique with an example. 7 M
- 3.a) A binary tree T has 9 nodes. The inorder and preorder traversals of the tree yield the following sequence of nodes:

 Inorder: E A C K F H D B G

Preorder: FAEKCDHGB Draw the tree T. 6 M

b) What is a Minimum Spanning Tree?. Write ADT routine for Depth First Search (DFS) traversal. 8 M

4.a) What is a Dictionary? Explain operations on Diction	aries. 6 M
b) What is Hashing? Can a perfect Hash function be madustify your answer. Explain in brief the various met used to resolve collision.	
5.a) What is an Abstract Data Type? Explain with an example.	4 M
b) What are priority Queues? How can priority queues implemented? Explain in brief.	be 6 M
c) Illustrate Multi way Merge with an example.	4 M
6.a) Write an algorithm to delete a node N in a binary sea tree. It is assumed that N has exactly one child?	rch 6 M
b) Explain the operations of binary search tree with an example.	8 M
7.a) What is an AVL tree? Explain how a node can be inserted into an AVL tree?	8 M
b) Explain the Different Rotations of AVL Trees.	6 M

8.a) Define a B tree of order m. Write algorithms to	8 M
(i) Search for a key in B-tree.	
(ii) Insert a key in a B-tree.	
(iii) Delete a key from a B-tree.	
b) Write a short note on Red-Black trees.	6 M